TNO Protocols

Implementation of the secure comparison protocol.

This building block is included in the TNO MPC Python Toolbox.

Note:

A significant performance improvement for some algorithms can be achieved by installing the GMPY2 library. The protocol requires both a Paillier and DGK cryptosystem.

Install

Install the tno.mpc.protocols package using one of the following options.

  • Personal access token

  • Deploy tokens

  • Cloning this repo (developer mode)

Personal access token

  1. Generate a personal access token with read_api scope. Instruction are found here.

  2. Install

    python -m pip install tno.mpc.protocols.secure_comparison --extra-index-url https://__token__:<personal_access_token>@ci.tno.nl/gitlab/api/v4/groups/3209/-/packages/pypi/simple
    

Deploy tokens

  1. Generate a deploy token with read_package_registry scope. Instruction are found here.

  2. Install

    python -m pip install tno.mpc.protocols.secure_comparison --extra-index-url https://<GITLAB_DEPLOY_TOKEN>:<GITLAB_DEPLOY_PASSWORD>@ci.tno.nl/gitlab/api/v4/groups/3209/-/packages/pypi/simple
    

Dockerfile

FROM python:3.8

ARG GITLAB_DEPLOY_TOKEN
ARG GITLAB_DEPLOY_PASSWORD

RUN python -m pip install tno.mpc.protocols.secure_comparison --extra-index-url https://$GITLAB_DEPLOY_TOKEN:$GITLAB_DEPLOY_PASSWORD@ci.tno.nl/gitlab/api/v4/groups/3209/-/packages/pypi/simple

Usage

Usage example:

import asyncio

from tno.mpc.communication import Pool
from tno.mpc.encryption_schemes.dgk import DGK
from tno.mpc.encryption_schemes.paillier import Paillier
from tno.mpc.encryption_schemes.utils import next_prime

from tno.mpc.protocols.secure_comparison import Initiator, KeyHolder


async def run_protocol():
    taskA = asyncio.create_task(alice.perform_secure_comparison(x_enc, y_enc))
    taskB = asyncio.create_task(bob.perform_secure_comparison())

    x_leq_y_enc, _ = await asyncio.gather(*[taskA, taskB])
    x_leq_y = scheme_paillier.decrypt(x_leq_y_enc)
    assert x_leq_y == 1


if __name__ == "__main__":
    # Set maximum bit length
    l = 16
    # Setup the Paillier scheme
    scheme_paillier = Paillier.from_security_parameter(key_length=2048)
    # Setup the DGK scheme
    u = next_prime((1 << (l + 2)))
    scheme_dgk = DGK.from_security_parameter(
        v_bits=160, n_bits=2048, u=u, full_decryption=False
    )

    # Setup communication pools
    pool_alice = Pool()
    pool_alice.add_http_server(8040)
    pool_alice.add_http_client("keyholder", "localhost", 8041)
    pool_bob = Pool()
    pool_bob.add_http_server(8041)
    pool_bob.add_http_client("initiator", "localhost", 8040)

    # Encrypt two numbers (x,y) for the protocol and set the maximum bit_length (l)
    x = 23
    y = 42
    x_enc = scheme_paillier.encrypt(x)
    y_enc = scheme_paillier.encrypt(y)

    alice = Initiator(l, communicator=pool_alice, other_party="keyholder")
    bob = KeyHolder(
        l,
        communicator=pool_bob,
        other_party="initiator",
        scheme_paillier=scheme_paillier,
        scheme_dgk=scheme_dgk,
    )

    # Run entire protocol interactively:
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run_protocol())

    # Or execute the protocol steps without interaction
    z_enc, r = alice.step_1(x_enc, y_enc, l, scheme_paillier)
    z, beta = bob.step_2(z_enc, l, scheme_paillier)
    alpha = alice.step_3(r, l)
    d_enc = bob.step_4a(z, scheme_dgk, scheme_paillier, l)
    beta_is_enc = bob.step_4b(beta, l, scheme_dgk)
    d_enc = alice.step_4c(d_enc, r, scheme_dgk, scheme_paillier)
    alpha_is_xor_beta_is_enc = alice.step_4d(alpha, beta_is_enc)
    w_is_enc, alpha_tilde = alice.step_4e(
        r, alpha, alpha_is_xor_beta_is_enc, d_enc, scheme_paillier
    )
    w_is_enc = alice.step_4f(w_is_enc)
    s, delta_a = alice.step_4g()
    c_is_enc = alice.step_4h(
        s, alpha, alpha_tilde, d_enc, beta_is_enc, w_is_enc, delta_a, scheme_dgk
    )
    c_is_enc = alice.step_4i(c_is_enc, scheme_dgk)
    delta_b = bob.step_4j(c_is_enc, scheme_dgk)
    zeta_1_enc, zeta_2_enc, delta_b_enc = bob.step_5(z, l, delta_b, scheme_paillier)
    beta_lt_alpha_enc = alice.step_6(delta_a, delta_b_enc)
    x_leq_y_enc = alice.step_7(
        zeta_1_enc, zeta_2_enc, r, l, beta_lt_alpha_enc, scheme_paillier
    )
    x_leq_y = scheme_paillier.decrypt(x_leq_y_enc)
    assert x_leq_y == 1

The communicator object is required only when the protocol is ran through perform_secure_comparison. In that case, one may choose to pass any communicator object that adheres to the tno.mpc.protocols.secure_comparison.Communicator protocol. An example can be found in the unit tests.

! SAFETY NOTICE ! ENSURE CIPHERTEXTS ARE RANDOMIZED

Since version 2.0.0 of tno.mpc.encryption_schemes.paillier and tno.mpc.encryption_schemes.dgk, it is possible to (potentially) make protocols more efficient by delaying randomization of ciphertexts. This library always operates in this ‘expert’ mode and therefore several protocol steps yield non-randomized ciphertext outputs. As a consequence, if the user chooses to perform the secure comparison steps manually, she needs to make sure that the resulting ciphertexts are randomized before they are communicated. If the tno.mpc.communication library is used (or more specifically, the Paillier and DGK serialize methods), then this will be done automatically for you (but warnings might be raised).

Indices and tables